KennyFelder's Advanced Algebra II: Activities and Homework PDF

By KennyFelder

Show description

Read or Download Advanced Algebra II: Activities and Homework PDF

Similar algebra books

Read e-book online Interactive Video: Methods and Applications PDF

This booklet is a groundbreaking source that covers either algorithms and applied sciences of interactive video clips, in order that companies in IT and information managements, scientists, academics, and software program engineers in video processing and computing device imaginative and prescient, coaches and teachers that use video expertise in educating, and at last end-users of hyper video clips will tremendously take advantage of it.

Download PDF by R. Sutherland, Teresa Rojano, Alan Bell, Romulo Lins: Perspectives on School Algebra

This booklet confronts the difficulty of ways youngsters can discover a method into the area of algebra. The contributions characterize a number of views which come with an research of events during which algebra is a good problem-solving device, using computer-based applied sciences, and a attention of the old evolution of algebra.

New PDF release: An Introduction to Abstract Algebra (Vol II)

The second one quantity keeps the process learn begun in quantity 1, yet can be used independently via these already owning an straight forward wisdom of the topic. A precis of simple crew thought is via bills of workforce homomorphisms, jewelry, fields and vital domain names. The comparable strategies of an invariant subgroup and a fantastic in a hoop are introduced in and the reader brought to vector areas and Boolean algebra.

Extra info for Advanced Algebra II: Activities and Homework

Sample text

P❚❊❘ ✶✳ ❋❯◆❈❚■❖◆❙ ✷✵ ❜❛rs ✢♦❛t t❤r♦✉❣❤ t❤❡ ❛✐r ❛♥❞ ❧❛♥❞ ♦♥ t❤❡ t❡❛❝❤❡r✬s ❞❡s❦✳ ❆♥❞✱ ❛s q✉✐❝❦❧② ❛s s❤❡ ❛♣♣❡❛r❡❞✱ ❙❛❧❧② ✐s ❣♦♥❡ t♦ ❞♦ ♠♦r❡ ❣♦♦❞ ✐♥ t❤❡ ✇♦r❧❞✳ ▲❡t s r❡♣r❡s❡♥t t❤❡ ♥✉♠❜❡r ♦❢ st✉❞❡♥ts ✐♥ t❤❡ ❝❧❛ss✱ ❛♥❞ c r❡♣r❡s❡♥t t❤❡ t♦t❛❧ ♥✉♠❜❡r ♦❢ ❝❛♥❞② ❜❛rs ❞✐str✐❜✉t❡❞✳ ❚✇♦ ❢♦r ❡❛❝❤ st✉❞❡♥t✱ ❛♥❞ ✜✈❡ ❢♦r t❤❡ t❡❛❝❤❡r✳ ❛✳ ❲r✐t❡ ❛ ❢✉♥❝t✐♦♥ t♦ s❤♦✇ ❤♦✇ ♠❛♥② ❝❛♥❞② ❜❛rs ❙❛❧❧② ❣❛✈❡ ♦✉t✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ ♥✉♠❜❡r ♦❢ st✉❞❡♥ts✳ c (s) =❴❴❴❴❴❴ ❜✳ ❯s❡ t❤❛t ❢✉♥❝t✐♦♥ t♦ ❛♥s✇❡r t❤❡ q✉❡st✐♦♥✿ ✐❢ t❤❡r❡ ✇❡r❡ ✷✵ st✉❞❡♥ts ✐♥ t❤❡ ❝❧❛ssr♦♦♠✱ ❤♦✇ ♠❛♥② ❝❛♥❞② ❜❛rs ✇❡r❡ ❞✐str✐❜✉t❡❞❄ ❋✐rst r❡♣r❡s❡♥t t❤❡ q✉❡st✐♦♥ ✐♥ ❢✉♥❝t✐♦♥❛❧ ♥♦t❛t✐♦♥✖t❤❡♥ ❛♥s✇❡r ✐t✳ ❴❴❴❴❴❴ ❝✳ ◆♦✇ ✉s❡ t❤❡ s❛♠❡ ❢✉♥❝t✐♦♥ t♦ ❛♥s✇❡r t❤❡ q✉❡st✐♦♥✿ ✐❢ ❙❛❧❧② ❞✐str✐❜✉t❡❞ ✸✺ ❝❛♥❞② ❜❛rs✱ ❤♦✇ ♠❛♥② st✉❞❡♥ts ✇❡r❡ ✐♥ t❤❡ ❝❧❛ss❄ ❋✐rst r❡♣r❡s❡♥t t❤❡ q✉❡st✐♦♥ ✐♥ ❢✉♥❝t✐♦♥❛❧ ♥♦t❛t✐♦♥✖t❤❡♥ ❛♥s✇❡r ✐t✳ ❴❴❴❴❴❴ ❊①❡r❝✐s❡ ✶✳✹✵ ❚❤❡ ❢✉♥❝t✐♦♥ f (x) = ✐s ✏❙✉❜tr❛❝t t❤r❡❡✱ t❤❡♥ t❛❦❡ t❤❡ sq✉❛r❡ r♦♦t✳✑ ❛✳ ❊①♣r❡ss t❤✐s ❢✉♥❝t✐♦♥ ❛❧❣❡❜r❛✐❝❛❧❧②✱ ✐♥st❡❛❞ ♦❢ ✐♥ ✇♦r❞s✿ f (x) =❴❴❴❴❴❴ ❜✳ ●✐✈❡ ❛♥② t❤r❡❡ ♣♦✐♥ts t❤❛t ❝♦✉❧❞ ❜❡ ❣❡♥❡r❛t❡❞ ❜② t❤✐s ❢✉♥❝t✐♦♥✿❴❴❴❴❴❴ ❝✳ ❲❤❛t x✲✈❛❧✉❡s ❛r❡ ✐♥ t❤❡ ❞♦♠❛✐♥ ♦❢ t❤✐s ❢✉♥❝t✐♦♥❄❴❴❴❴❴❴ ❊①❡r❝✐s❡ ✶✳✹✶ ❚❤❡ ❢✉♥❝t✐♦♥ y (x) ✐s ✏●✐✈❡♥ ❛♥② ♥✉♠❜❡r✱ r❡t✉r♥ ✻✳✑ ❛✳ ❊①♣r❡ss t❤✐s ❢✉♥❝t✐♦♥ ❛❧❣❡❜r❛✐❝❛❧❧②✱ ✐♥st❡❛❞ ♦❢ ✐♥ ✇♦r❞s✿ y (x) =❴❴❴❴❴❴ ❜✳ ●✐✈❡ ❛♥② t❤r❡❡ ♣♦✐♥ts t❤❛t ❝♦✉❧❞ ❜❡ ❣❡♥❡r❛t❡❞ ❜② t❤✐s ❢✉♥❝t✐♦♥✿❴❴❴❴❴❴ ❝✳ ❲❤❛t x✲✈❛❧✉❡s ❛r❡ ✐♥ t❤❡ ❞♦♠❛✐♥ ♦❢ t❤✐s ❢✉♥❝t✐♦♥❄❴❴❴❴❴❴ ❊①❡r❝✐s❡ ✶✳✹✷ z (x) = x2 − 6x + 9 ❛✳ z (−1) =❴❴❴❴❴❴ ❜✳ z (0) = ❴❴❴❴❴❴ ❝✳ z (1) =❴❴❴❴❴❴ ❞✳ z (3) =❴❴❴❴❴❴ ❡✳ z (x + 2) =❴❴❴❴❴❴ ❢✳ z (z (x)) =❴❴❴❴❴❴ ❊①❡r❝✐s❡ ✶✳✹✸ ❖❢ t❤❡ ❢♦❧❧♦✇✐♥❣ s❡ts ♦❢ ♥✉♠❜❡rs✱ ✐♥❞✐❝❛t❡ ✇❤✐❝❤ ♦♥❡s ❝♦✉❧❞ ♣♦ss✐❜❧② ❤❛✈❡ ❜❡❡♥ ❣❡♥❡r❛t❡❞ ❜② ❛ ❢✉♥❝t✐♦♥✳ ❆❧❧ ■ ♥❡❡❞ ✐s ❛ ✏❨❡s✑ ♦r ✏◆♦✑✖②♦✉ ❞♦♥✬t ❤❛✈❡ t♦ t❡❧❧ ♠❡ t❤❡ ❢✉♥❝t✐♦♥✦ ✭❇✉t ❣♦ ❛❤❡❛❞ ❛♥❞ ❞♦✱ ✐❢ ②♦✉ ✇❛♥t t♦.

P❚❊❘ ✶✳ ❋❯◆❈❚■❖◆❙ ✷✵ ❜❛rs ✢♦❛t t❤r♦✉❣❤ t❤❡ ❛✐r ❛♥❞ ❧❛♥❞ ♦♥ t❤❡ t❡❛❝❤❡r✬s ❞❡s❦✳ ❆♥❞✱ ❛s q✉✐❝❦❧② ❛s s❤❡ ❛♣♣❡❛r❡❞✱ ❙❛❧❧② ✐s ❣♦♥❡ t♦ ❞♦ ♠♦r❡ ❣♦♦❞ ✐♥ t❤❡ ✇♦r❧❞✳ ▲❡t s r❡♣r❡s❡♥t t❤❡ ♥✉♠❜❡r ♦❢ st✉❞❡♥ts ✐♥ t❤❡ ❝❧❛ss✱ ❛♥❞ c r❡♣r❡s❡♥t t❤❡ t♦t❛❧ ♥✉♠❜❡r ♦❢ ❝❛♥❞② ❜❛rs ❞✐str✐❜✉t❡❞✳ ❚✇♦ ❢♦r ❡❛❝❤ st✉❞❡♥t✱ ❛♥❞ ✜✈❡ ❢♦r t❤❡ t❡❛❝❤❡r✳ ❛✳ ❲r✐t❡ ❛ ❢✉♥❝t✐♦♥ t♦ s❤♦✇ ❤♦✇ ♠❛♥② ❝❛♥❞② ❜❛rs ❙❛❧❧② ❣❛✈❡ ♦✉t✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ ♥✉♠❜❡r ♦❢ st✉❞❡♥ts✳ c (s) =❴❴❴❴❴❴ ❜✳ ❯s❡ t❤❛t ❢✉♥❝t✐♦♥ t♦ ❛♥s✇❡r t❤❡ q✉❡st✐♦♥✿ ✐❢ t❤❡r❡ ✇❡r❡ ✷✵ st✉❞❡♥ts ✐♥ t❤❡ ❝❧❛ssr♦♦♠✱ ❤♦✇ ♠❛♥② ❝❛♥❞② ❜❛rs ✇❡r❡ ❞✐str✐❜✉t❡❞❄ ❋✐rst r❡♣r❡s❡♥t t❤❡ q✉❡st✐♦♥ ✐♥ ❢✉♥❝t✐♦♥❛❧ ♥♦t❛t✐♦♥✖t❤❡♥ ❛♥s✇❡r ✐t✳ ❴❴❴❴❴❴ ❝✳ ◆♦✇ ✉s❡ t❤❡ s❛♠❡ ❢✉♥❝t✐♦♥ t♦ ❛♥s✇❡r t❤❡ q✉❡st✐♦♥✿ ✐❢ ❙❛❧❧② ❞✐str✐❜✉t❡❞ ✸✺ ❝❛♥❞② ❜❛rs✱ ❤♦✇ ♠❛♥② st✉❞❡♥ts ✇❡r❡ ✐♥ t❤❡ ❝❧❛ss❄ ❋✐rst r❡♣r❡s❡♥t t❤❡ q✉❡st✐♦♥ ✐♥ ❢✉♥❝t✐♦♥❛❧ ♥♦t❛t✐♦♥✖t❤❡♥ ❛♥s✇❡r ✐t✳ ❴❴❴❴❴❴ ❊①❡r❝✐s❡ ✶✳✹✵ ❚❤❡ ❢✉♥❝t✐♦♥ f (x) = ✐s ✏❙✉❜tr❛❝t t❤r❡❡✱ t❤❡♥ t❛❦❡ t❤❡ sq✉❛r❡ r♦♦t✳✑ ❛✳ ❊①♣r❡ss t❤✐s ❢✉♥❝t✐♦♥ ❛❧❣❡❜r❛✐❝❛❧❧②✱ ✐♥st❡❛❞ ♦❢ ✐♥ ✇♦r❞s✿ f (x) =❴❴❴❴❴❴ ❜✳ ●✐✈❡ ❛♥② t❤r❡❡ ♣♦✐♥ts t❤❛t ❝♦✉❧❞ ❜❡ ❣❡♥❡r❛t❡❞ ❜② t❤✐s ❢✉♥❝t✐♦♥✿❴❴❴❴❴❴ ❝✳ ❲❤❛t x✲✈❛❧✉❡s ❛r❡ ✐♥ t❤❡ ❞♦♠❛✐♥ ♦❢ t❤✐s ❢✉♥❝t✐♦♥❄❴❴❴❴❴❴ ❊①❡r❝✐s❡ ✶✳✹✶ ❚❤❡ ❢✉♥❝t✐♦♥ y (x) ✐s ✏●✐✈❡♥ ❛♥② ♥✉♠❜❡r✱ r❡t✉r♥ ✻✳✑ ❛✳ ❊①♣r❡ss t❤✐s ❢✉♥❝t✐♦♥ ❛❧❣❡❜r❛✐❝❛❧❧②✱ ✐♥st❡❛❞ ♦❢ ✐♥ ✇♦r❞s✿ y (x) =❴❴❴❴❴❴ ❜✳ ●✐✈❡ ❛♥② t❤r❡❡ ♣♦✐♥ts t❤❛t ❝♦✉❧❞ ❜❡ ❣❡♥❡r❛t❡❞ ❜② t❤✐s ❢✉♥❝t✐♦♥✿❴❴❴❴❴❴ ❝✳ ❲❤❛t x✲✈❛❧✉❡s ❛r❡ ✐♥ t❤❡ ❞♦♠❛✐♥ ♦❢ t❤✐s ❢✉♥❝t✐♦♥❄❴❴❴❴❴❴ ❊①❡r❝✐s❡ ✶✳✹✷ z (x) = x2 − 6x + 9 ❛✳ z (−1) =❴❴❴❴❴❴ ❜✳ z (0) = ❴❴❴❴❴❴ ❝✳ z (1) =❴❴❴❴❴❴ ❞✳ z (3) =❴❴❴❴❴❴ ❡✳ z (x + 2) =❴❴❴❴❴❴ ❢✳ z (z (x)) =❴❴❴❴❴❴ ❊①❡r❝✐s❡ ✶✳✹✸ ❖❢ t❤❡ ❢♦❧❧♦✇✐♥❣ s❡ts ♦❢ ♥✉♠❜❡rs✱ ✐♥❞✐❝❛t❡ ✇❤✐❝❤ ♦♥❡s ❝♦✉❧❞ ♣♦ss✐❜❧② ❤❛✈❡ ❜❡❡♥ ❣❡♥❡r❛t❡❞ ❜② ❛ ❢✉♥❝t✐♦♥✳ ❆❧❧ ■ ♥❡❡❞ ✐s ❛ ✏❨❡s✑ ♦r ✏◆♦✑✖②♦✉ ❞♦♥✬t ❤❛✈❡ t♦ t❡❧❧ ♠❡ t❤❡ ❢✉♥❝t✐♦♥✦ ✭❇✉t ❣♦ ❛❤❡❛❞ ❛♥❞ ❞♦✱ ✐❢ ②♦✉ ✇❛♥t t♦.

P❚❊❘ ✶✳ ❋❯◆❈❚■❖◆❙ ✷✵ ❜❛rs ✢♦❛t t❤r♦✉❣❤ t❤❡ ❛✐r ❛♥❞ ❧❛♥❞ ♦♥ t❤❡ t❡❛❝❤❡r✬s ❞❡s❦✳ ❆♥❞✱ ❛s q✉✐❝❦❧② ❛s s❤❡ ❛♣♣❡❛r❡❞✱ ❙❛❧❧② ✐s ❣♦♥❡ t♦ ❞♦ ♠♦r❡ ❣♦♦❞ ✐♥ t❤❡ ✇♦r❧❞✳ ▲❡t s r❡♣r❡s❡♥t t❤❡ ♥✉♠❜❡r ♦❢ st✉❞❡♥ts ✐♥ t❤❡ ❝❧❛ss✱ ❛♥❞ c r❡♣r❡s❡♥t t❤❡ t♦t❛❧ ♥✉♠❜❡r ♦❢ ❝❛♥❞② ❜❛rs ❞✐str✐❜✉t❡❞✳ ❚✇♦ ❢♦r ❡❛❝❤ st✉❞❡♥t✱ ❛♥❞ ✜✈❡ ❢♦r t❤❡ t❡❛❝❤❡r✳ ❛✳ ❲r✐t❡ ❛ ❢✉♥❝t✐♦♥ t♦ s❤♦✇ ❤♦✇ ♠❛♥② ❝❛♥❞② ❜❛rs ❙❛❧❧② ❣❛✈❡ ♦✉t✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ ♥✉♠❜❡r ♦❢ st✉❞❡♥ts✳ c (s) =❴❴❴❴❴❴ ❜✳ ❯s❡ t❤❛t ❢✉♥❝t✐♦♥ t♦ ❛♥s✇❡r t❤❡ q✉❡st✐♦♥✿ ✐❢ t❤❡r❡ ✇❡r❡ ✷✵ st✉❞❡♥ts ✐♥ t❤❡ ❝❧❛ssr♦♦♠✱ ❤♦✇ ♠❛♥② ❝❛♥❞② ❜❛rs ✇❡r❡ ❞✐str✐❜✉t❡❞❄ ❋✐rst r❡♣r❡s❡♥t t❤❡ q✉❡st✐♦♥ ✐♥ ❢✉♥❝t✐♦♥❛❧ ♥♦t❛t✐♦♥✖t❤❡♥ ❛♥s✇❡r ✐t✳ ❴❴❴❴❴❴ ❝✳ ◆♦✇ ✉s❡ t❤❡ s❛♠❡ ❢✉♥❝t✐♦♥ t♦ ❛♥s✇❡r t❤❡ q✉❡st✐♦♥✿ ✐❢ ❙❛❧❧② ❞✐str✐❜✉t❡❞ ✸✺ ❝❛♥❞② ❜❛rs✱ ❤♦✇ ♠❛♥② st✉❞❡♥ts ✇❡r❡ ✐♥ t❤❡ ❝❧❛ss❄ ❋✐rst r❡♣r❡s❡♥t t❤❡ q✉❡st✐♦♥ ✐♥ ❢✉♥❝t✐♦♥❛❧ ♥♦t❛t✐♦♥✖t❤❡♥ ❛♥s✇❡r ✐t✳ ❴❴❴❴❴❴ ❊①❡r❝✐s❡ ✶✳✹✵ ❚❤❡ ❢✉♥❝t✐♦♥ f (x) = ✐s ✏❙✉❜tr❛❝t t❤r❡❡✱ t❤❡♥ t❛❦❡ t❤❡ sq✉❛r❡ r♦♦t✳✑ ❛✳ ❊①♣r❡ss t❤✐s ❢✉♥❝t✐♦♥ ❛❧❣❡❜r❛✐❝❛❧❧②✱ ✐♥st❡❛❞ ♦❢ ✐♥ ✇♦r❞s✿ f (x) =❴❴❴❴❴❴ ❜✳ ●✐✈❡ ❛♥② t❤r❡❡ ♣♦✐♥ts t❤❛t ❝♦✉❧❞ ❜❡ ❣❡♥❡r❛t❡❞ ❜② t❤✐s ❢✉♥❝t✐♦♥✿❴❴❴❴❴❴ ❝✳ ❲❤❛t x✲✈❛❧✉❡s ❛r❡ ✐♥ t❤❡ ❞♦♠❛✐♥ ♦❢ t❤✐s ❢✉♥❝t✐♦♥❄❴❴❴❴❴❴ ❊①❡r❝✐s❡ ✶✳✹✶ ❚❤❡ ❢✉♥❝t✐♦♥ y (x) ✐s ✏●✐✈❡♥ ❛♥② ♥✉♠❜❡r✱ r❡t✉r♥ ✻✳✑ ❛✳ ❊①♣r❡ss t❤✐s ❢✉♥❝t✐♦♥ ❛❧❣❡❜r❛✐❝❛❧❧②✱ ✐♥st❡❛❞ ♦❢ ✐♥ ✇♦r❞s✿ y (x) =❴❴❴❴❴❴ ❜✳ ●✐✈❡ ❛♥② t❤r❡❡ ♣♦✐♥ts t❤❛t ❝♦✉❧❞ ❜❡ ❣❡♥❡r❛t❡❞ ❜② t❤✐s ❢✉♥❝t✐♦♥✿❴❴❴❴❴❴ ❝✳ ❲❤❛t x✲✈❛❧✉❡s ❛r❡ ✐♥ t❤❡ ❞♦♠❛✐♥ ♦❢ t❤✐s ❢✉♥❝t✐♦♥❄❴❴❴❴❴❴ ❊①❡r❝✐s❡ ✶✳✹✷ z (x) = x2 − 6x + 9 ❛✳ z (−1) =❴❴❴❴❴❴ ❜✳ z (0) = ❴❴❴❴❴❴ ❝✳ z (1) =❴❴❴❴❴❴ ❞✳ z (3) =❴❴❴❴❴❴ ❡✳ z (x + 2) =❴❴❴❴❴❴ ❢✳ z (z (x)) =❴❴❴❴❴❴ ❊①❡r❝✐s❡ ✶✳✹✸ ❖❢ t❤❡ ❢♦❧❧♦✇✐♥❣ s❡ts ♦❢ ♥✉♠❜❡rs✱ ✐♥❞✐❝❛t❡ ✇❤✐❝❤ ♦♥❡s ❝♦✉❧❞ ♣♦ss✐❜❧② ❤❛✈❡ ❜❡❡♥ ❣❡♥❡r❛t❡❞ ❜② ❛ ❢✉♥❝t✐♦♥✳ ❆❧❧ ■ ♥❡❡❞ ✐s ❛ ✏❨❡s✑ ♦r ✏◆♦✑✖②♦✉ ❞♦♥✬t ❤❛✈❡ t♦ t❡❧❧ ♠❡ t❤❡ ❢✉♥❝t✐♦♥✦ ✭❇✉t ❣♦ ❛❤❡❛❞ ❛♥❞ ❞♦✱ ✐❢ ②♦✉ ✇❛♥t t♦.

Download PDF sample

Advanced Algebra II: Activities and Homework by KennyFelder


by James
4.2

Rated 4.17 of 5 – based on 38 votes